228 research outputs found

    Weakly Equivalent Arrays

    Full text link
    The (extensional) theory of arrays is widely used to model systems. Hence, efficient decision procedures are needed to model check such systems. Current decision procedures for the theory of arrays saturate the read-over-write and extensionality axioms originally proposed by McCarthy. Various filters are used to limit the number of axiom instantiations while preserving completeness. We present an algorithm that lazily instantiates lemmas based on weak equivalence classes. These lemmas are easier to interpolate as they only contain existing terms. We formally define weak equivalence and show correctness of the resulting decision procedure

    Quantifier-Free Interpolation of a Theory of Arrays

    Get PDF
    The use of interpolants in model checking is becoming an enabling technology to allow fast and robust verification of hardware and software. The application of encodings based on the theory of arrays, however, is limited by the impossibility of deriving quantifier- free interpolants in general. In this paper, we show that it is possible to obtain quantifier-free interpolants for a Skolemized version of the extensional theory of arrays. We prove this in two ways: (1) non-constructively, by using the model theoretic notion of amalgamation, which is known to be equivalent to admit quantifier-free interpolation for universal theories; and (2) constructively, by designing an interpolating procedure, based on solving equations between array updates. (Interestingly, rewriting techniques are used in the key steps of the solver and its proof of correctness.) To the best of our knowledge, this is the first successful attempt of computing quantifier- free interpolants for a variant of the theory of arrays with extensionality

    New results on rewrite-based satisfiability procedures

    Full text link
    Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T. If a sound and complete inference system for first-order logic is guaranteed to terminate on T-satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T-satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Ordered Sets in the Calculus of Data Structures

    Get PDF
    Our goal is to identify families of relations that are useful for reasoning about software. We describe such families using decidable quantifier-free classes of logical constraints with a rich set of operations. A key challenge is to define such classes of constraints in a modular way, by combining multiple decidable classes. Working with quantifierfree combinations of constraints makes the combination agenda more realistic and the resulting logics more likely to be tractable than in the presence of quantifiers. Our approach to combination is based on reducing decidable fragments to a common class, Boolean Algebra with Presburger Arithmetic (BAPA). This logic was introduced by Feferman and Vaught in 1959 and can express properties of uninterpreted sets of elements, with set algebra operations and equicardinality relation (consequently, it can also express Presburger arithmetic constraints on cardinalities of sets). Combination by reduction to BAPA allows us to obtain decidable quantifierfree combinations of decidable logics that share BAPA operations. We use the term Calculus of Data Structures to denote a family of decidable constraints that reduce to BAPA. This class includes, for example, combinations of formulas in BAPA, weak monadic second-order logic of k-successors, two-variable logic with counting, and term algebras with certain homomorphisms. The approach of reduction to BAPA generalizes the Nelson-Oppen combination that forms the foundation of constraint solvers used in software verification. BAPA is convenient as a target for reductions because it admits quantifier elimination and its quantifier-free fragment is NP-complete. We describe a new member of the Calculus of Data Structures: a quantifier-free fragment that supports 1) boolean algebra of finite and infinite sets of real numbers, 2) linear arithmetic over real numbers, 3) formulas that can restrict chosen set or element variables to range over integers (providing, among others, the power of mixed integer arithmetic and sets of integers), 4) the cardinality operators, stating whether a given set has a given finite cardinality or is infinite, 5) infimum and supremum operators on sets. Among the applications of this logic are reasoning about the externally observable behavior of data structures such as sorted lists and priority queues, and specifying witness functions for the BAPA synthesis problem. We describe an abstract reduction to BAPA for our logic, proving that the satisfiability of the logic is in NP and that it can be combined with the other fragments of the Calculus of Data Structures
    • …
    corecore